Study of the critical heat flux condition with water and R-123 during flow boiling in microtubes. Part I: Experimental results and discussion of parametric effects
نویسندگان
چکیده
Extensive experimentation was performed to obtain flow boiling critical heat flux data in single stainless steel microtubes with diameters from 0.286 to 0.700 mm over a wide range of mass fluxes, inlet subcoolings, and exit pressures for two different working fluids (water and R-123). The effect of different operating parameters – mass flux, inlet subcooling, exit quality, heated length and diameter – were assessed in detail (Part I of the paper). The conventional DNB-type behavior is observed in the high subcooled region, and the typical dryout type behavior is seen in the high-quality saturated region when the flow is completely annular. The flow in transitional flow patterns (churn–annular or slug–annular) causes a peculiar increase of CHF with exit quality. Also, the increased void fraction near the saturated region in subcooled boiling results in increased subcooled CHF values. Part II of the paper deals with comparison of data with existing correlations and development of a new correlation to predict the CHF condition in the subcooled liquid region. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Experimental Study on the Effect of Magnetic Field on Critical Heat Flux of Ferrofluid Flow Boiling in a Vertical Tube
In the present work, the critical heat flux measurements were performed for the subcooled flow boiling of pure water and magnetic nanofluids (i.e., water + 0.01 and 0.1 vol.% Fe3O4) in a vertical tube. The effect of applying an external magnetic field on the CHF variation was studied experimentally as well. The obtained results indicated that the subcooled flow boiling CHF in the vertical tub...
متن کاملStudy of the critical heat flux condition with water and R-123 during flow boiling in microtubes. Part II – Comparison of data with correlations and establishment of a new subcooled CHF correlation
This study’s objective was to better understand the CHF condition in microchannels. The effect of different operating parameters – mass flux, inlet subcooling, exit quality, heated length and diameter – were assessed in detail in Part I of the study and compared to the behavior in conventional sized channels. Part II of the study compares the water and R-123 data with existing micro/macrochanne...
متن کاملExperimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling
Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...
متن کاملThe Effect of Linear Change of Tube Diameter on Subcooled Flow Boiling and Critical Heat Flux
One of the major industry problems is the flow boiling, where reaching to the critical heat flux (CHF) condition can lead to a temperature jump and damage of the systems. In the present study, the effects of a uniform change in tube diameter on subcooled flow boiling and CHF was numerically investigated. The Euler-Euler model was used to investigate the relationship between the two liquid and v...
متن کاملExperimental measurement of heat transfer coefficient and mass of deposited CaSO4 in subcooled flow boiling condition
Fouling is a common, fundamental and costly problem in heat transfer systems, which reduces thermal efficiency of equipment, increases the energy loss and causes strong damage to the heat transfer equipment in various industries. The main causes of fouling on the heat transfer surfaces are salts with inverse temperature-solubility in the fluid which calcium sulfate is one of the most important ...
متن کامل